If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25t+.5t^2=0
a = .5; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·.5·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*.5}=\frac{-50}{1} =-50 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*.5}=\frac{0}{1} =0 $
| 8m-5.5=12.5 | | 13x+3+12=180 | | 13x+3+12=90 | | 7y-15=-29 | | 2x+6=5-6 | | 45=21+4x | | -10a+50=−90 | | 48p+12=3p-12 | | -105x+192=-970 | | (10)2(x-4)+2x=6x-2 | | 5t=10/17 | | 6m-36=8m-24 | | r/5+3=28 | | 48p+12=3p-23 | | 4×+2y=14 | | X-23=1o | | -8x-3-2x=11 | | 12-2y+2y=12 | | 1x+143=135 | | 0.21-0.03(x+1)=0.01(2-x) | | 120+120+120+100+x+(x+100=720 | | 120(3)+100+x+(x+10)=720 | | 120(3)+100+x+(x+100)=720 | | -7(8-8n)=112 | | 29-5x=-46 | | 24x+17=3(5x-2) | | 120(3)+100+x+(x+100=720 | | X2+13x-90=0 | | 8-3(1-n)=-6-6n | | x+1/x=8/6 | | 215+5p=300 | | 6j+10-8j+(-4)=-10+10 |